$$
\text { 1.00 Mole }=22.4 \mathrm{~L} \text { at STP }
$$

For a sphere: $\mathrm{V}=4 / 3 \pi \mathrm{r}^{3}$
$22400 \mathrm{~cm}^{3}=4 / 3 \pi \mathrm{r}^{3}$
$\mathrm{r}=17.5 \mathrm{~cm}$
$\mathrm{d}($ diameter $)=35 \mathrm{~cm}$
(13.8 inches, which happens to be the approximate size of a toy ball at Walmart). I use this model to explain that one mole of every gas occupies the same volume (22.4L) at STP.

Model of Avogadro's Hypothesis: Equal volumes of a gas contain equal number of particles.

Two one liter bottles, each with 5 particles inside. One bottle has smaller monatomic particles (left), one bottle has larger diatomic particles (right).

