Assignment Previewer 7/30/18, 3:03 PM

12 Heat Capacity of an Unknown Lab (1762648)

Question	1	2	3	4	5	6	7	8	9

Instructions

Materials: Hot water bath, unknown metal sample, tongs, tap water, insulated cup, thermometer, Vernier wireless temperature probe, Vernier Graphical Analysis App, iPad, large graduated cylinder.

Procedure:

- 1. Measure 250.0 mL of tap water with a large plastic graduated cylinder and pour the water into an insulated cup.
- 2. Measure the temperature of the water in the cup and record the temperature.
- 3. Bring the cup over to the hot water bath and transfer the hot metal into the cup with tongs.
- 4. Gently swirl the cup and record the temperature of the water in the cup until a maximum is reached. Record the maximum temperature.
- 5. Record the temperature of the hot water bath.
- 6. Dry the metal and find its mass.

Question Details	Lab Partners [1837468]
Enter the name(s) of your lab partner(s). (If you	u worked by yourself, enter "none").
Question Details Temperature is a measure of the	Unit 12 Temperature and Heat [1732985] (three words) of particles in a sample of matter.
<u></u>	two samples of matter because of differences in their temperatures.

Assignment Previewer 7/30/18, 3:03 PM

3.	Question Details	Unit 12 Specific Heat Rank [1733158]
	Rank the following from lowest to highest specific heat.(do some resear	arch online; pay attention to the units)
	lowest - 😊	
	-	
	- 0	
	(<u>-</u>	
	- 0	
	highest - 😊	
4.	Question Details	Unit 12 Specific Heat of a Metal Lab Data [1733000]
	a. Enter the experimental mass(from the balance) of the metal: 40	g
	b. Enter the temperature of the water in the cup: 400 C	
	b. Enter the temperature of the water in the cup:	
	c. Enter the initial temperature of the metal: 40 C	
	d. Enter the final temperature of the metal and water in the cup:	°C
	e. Enter the volume of water in the cup: 40 mL	
	f. Calculate the mass of the water in the cup (assume the density of water)	ater = 1.000 g/ml):40g
	g. Enter the change in temperature of the water in the cup:	°C
	h. Enter the change in temperature of the metal:40 C	
	i. Calculate the heat gained by the water:	
	j. Calculate the specific heat of the metal:(use your original data, not t	the rounded answer from letter i.) 40 J/g°C
5.	Question Details	Percent Error Specific Heat Lab [1742500]
	Enter the specific heat of the unknown again:	
	40. J/g°C	
	This question is a check of accuracy. A red X will probably appear, which number of points deducted is a reflection of how close you are to the a	

Assignment Previewer 7/30/18, 3:03 PM

6.	Question Details	Water Heat capacity [1711336]				
	Water has such a high heat capacity because					
	 water has a higher density than most metals. 					
	much of the heat that is added to water is converted to kinetic	energy.				
	o water is not very dense like metals and therefore doesn't cond	uct heat as readily.				
	 much of the added energy is required to break hydrogen bonds 	s.				
	onone of the energy is stored as potential energy.					
 •	Question Details	dls.121.8.5 [309494]				
	Given the following heat capacities and that each sample had the same mass, which would require the greatest amount of					
	heat energy to reach a temperature of 100°C?					
	 All of the choices require the same amount of heat energy. 	 All of the choices require the same amount of heat energy. 				
	 aluminum, 0.90 j / (g°C) ammonia, 4.70 j / (g°C) silver, 0.24 j / (g°C) 					
	○ water, 4.184 j / (g°C)					
 •	Question Details	High specific heat [3583808]				
	Which of the following describes a material with a high specific heat?	riigii specific fleat [5303000]				
	It takes a lot of energy to change the temperature of the mate	erial.				
	It is a material that melts at a high temperature.					
	It is a material that rapidly cools, giving up its heat.					
	It is a material that melts at a low temperature.					
	It takes very little energy to change the temperature of the material.					
	It is a material that changes temperature very rapidly when he					
	To be material that changes temperature very rapidly mierrice					
	Question Details	Final T heat question [3594796]				
	Suppose a piece of iron with a mass of 30.4 g at a temp of 100.0 °C is dropped into an insulated container of water. The mass of the water is 155.9 g and its temperature before adding the iron is 20.0 °C. What will be the final temp of the system? (Specific heat of iron is 0.449 J/g°C). 40 \bigcirc \bigcirc °C					

Submissions Allowed: 5 Category: Homework

Before due date Question Score

Assignment Previewer 7/30/18, 3:03 PM

Code: Locked: **Yes**

Author: Ryan, Matt (mryan@allsaintsschool.org)

Last Saved: Apr 24, 2018 08:46 AM CDT

Group: **Coronado High School**Randomization: **Person**Which graded: **Last**

Assignment Score
Publish Essay Scores
Question Part Score
Add Practice Button
Help/Hints

Save Work
After due date
Question Score
Assignment Score
Publish Essay Scores

Key

Question Part Score

Solution

Add Practice Button

Help/Hints